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Research problem

Solving PDE(s) in practice:

PDE(s) (+ IC or/and BC)
⇓

Discretization (FDM, FEM, FVM)
⇓

Algebraic equations
⇓

Numerical solving
⇓

Approximate solution

The main research problem here is to construct a compatible (mimetic)

discretization which inherits within the required accuracy such

fundamental properties of the PDE(s) as conservation laws,

symmetries, maximum principle, etc.
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Discretization (Gerdt,Blinkov,Mozzhilkin'2006)

Construction of �nite di�erence approximation (FDA):

1 For an input PDE system complete it to involution.

2 If possible convert PDE into integral conservation law form with a
polynomial integrand and choose a control volume (integration
contour/surface).

3 Add to the output of the previous step the exact integral relations
between derivatives of dependent variables that occur in the output
of Step 2.

4 Discretize the obtained equations (on a Cathesian solution grid) by
using methods of numerical integration.

5 Eliminate partial derivatives of dependent variables from the
obtained di�erence equations by applying the Gr�obner bases
technique. This yields FDA to PDE(s) (di�erence scheme) as the
subset of the Gr�obner basis that does not contain partial derivatives.
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Evolution equations

Let ∂x be the derivation operator and R := Q(α, β, . . .){u} be the
ordinary di�erential polynomial ring over the �eld Q(α, β, . . .) of
constants (parameters).

Here we consider quasilinear evolution equations (QLEE) of the
form

ut = a um + F (um−1, . . . , u1, u) , 0 6= a ∈ Q , m ∈ N>0

where uk := ∂kx u (0 ≤ k ≤ m), u0 := u and F ∈ R is a di�erential
polynomial of order m − 1 in ∂x (denotation: ord(F ) = m − 1).

If there is a di�erential polynomial P ∈ R such that F = ∂xP then
the equation admits the di�erential conservation law form

ut = ∂x (a um−1 + P) , P ∈ R , ord(P) = m − 2
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Examples

The set of QLEEs contains most of classical equations (Kudryashov'10):

Korteveg-de Vries (KdV) hierarchy

ut + uxxx + 6uux = 0 (KdV)

ut + uxxxxx + 10uxx + 30u2ux + 20uxuxx = 0

...................................................................

Burgers hierarchy (Burgers equation for n = 1)

ut + a ∂x (∂x + u)n u = 0 , a 6= 0 , n ∈ N≥0

Kuramoto-Sivashinsky equation

ut + uux + a uxx + b uxxx + c uxxxx = 0

Burgers-Huxley equation

ut + a uxx + b uux + c u + δu2 + d u3 = 0

and their various generalizations.
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Discretization of QLEE I

If a QLEE admits the di�erential polynomial conservation law form
we convert it into the equivalent integral conservation law form∮

Γ
(P + aum−1) dt + u dx = 0

where Γ is an arbitrary singly connected integration contour.

We choose the Cartesian grid with tn+1− tn = τ , xj+1− xj = h and
choose simple rectangular integration contour as a �control volume�

j j + 1 j + 2
n

n+ 1
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Discretization of QLEE II

To discretize the contour integral we apply a numerical method of
its evaluation in term of the grid function

unj := u(tn, xj)

Then we add the (exact) integral relations∫ xj+1

xj

uk+1 dx = uk(t, xj+1)− uk(t, xj) , k = 1, . . . ,m − 2

and approximate the integrals numerically on the grid.

As a result, we obtain a system of di�erence equations containing

unj , u1
n
j , . . . , um−1

n
j

Finally, di�erence elimination of partial derivatives yields FDA.

V.P.Gerdt (JINR), Yu.A.Blinkov (SSU), K.B.Marinov (UD) Discretization of quasilinear evolution equations



Introduction Evolution equations KdV equation Discretization Numerical experiments Conclusion

KdV equation

To be speci�c, we consider the nonlinear evolution Korteveg-de
Vries equation (KdV) in the following form

f = 0, f := ut + αuux + βuxxx , u = u(t, x) , α, β ∈ R .

It has in�nitely many local conservation laws

{ ∂tTi + ∂xXi︸ ︷︷ ︸
Ci

= 0|f =0 =⇒ d

dt

∫ ∞
−∞

Tidx+[Xi ]
∞
−∞ = 0 | i ∈ N≥1 }

where Ti = Ti (u) are densities and Xi = Xi (u) are �uxes.
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Conserved densities and �uxes

For α = 3, β = 1 the low order conservation laws are given by

i Ti and Xi

1 T1 = u X1 = 3u2 + uxx

2 T2 = ux X2 = 6uux + uxxx

3 T3 = u2 + uxx X3 = 5u2x + 8uuxx + 4u3 + uxxxx

4 T4 = 4uux + uxxx

X4 = 18uxuxx + 24u2ux + 10uuxxx + uxxxxx

5 T5 = 2u3 + 6uuxx + 10u2x + uxxxx

X5 = 42u2uxx + 19u2xx + 60uu2x + 28uxuxxx + 12uuxxxx + 9u4 + uxxxxxx

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

These conservation laws were computed by using Maple package
PDEBellII (Miao,Wang,Chen,Yang'14).
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Conservation laws expressed via f

Conservation laws Ci belong to the radical di�erential ideal
Jf K ⊂ R = Q(α, β){u} generated by f . In particular,

i Ci ordx(Ci )

1 f 3
2 fx 4
3 fxx + 2uf 5
4 fxxx + uf 4x + u4x f 6
5 fxxxx + 6ufxx + 5ux fx + 6uxx f + 6u2f 7
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Ci were computed by using Maple package DifferentialThomas

(B�achler,Gerdt,Lange-Hegermann,Robertz'12).
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Discretization of KdV I

Integral conservation law form

ut + (P + βuxx)x = 0 ⇐⇒
∮

Γ
−(P + βuxx) dt + u dx = 0

and chose the integration contour with tn+1− tn = τ , xj+1− xj = h
Integral relations∫ xj+2

xj

uxx dx = ux(t, xj+2)− ux(t, xj) ,∫ xj+1

xj

ux dx = u(t, xj+1)− u(t, xj) .
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Discretization of KdV II

To approximate numerically the contour integral, we apply the
trapezoidal rule to integration over t and the midpoint rule to
integration over x .

For numerical approximations of the integral relations we apply the
trapezoidal rule for the integration of ux and the midpoint rule for
the integration of uxx . This leads to the di�erence approximation
to KdV which is outputted by the following Maple code (Gerdt,
Blinkov, Marinov'17)
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Maple code
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Computer algebra software used

To perform algebraically the di�erence elimination of the grid
functions, that correspond to partial derivatives of u, from the
obtained discrete system we use the Maple package LDA (Linear
Di�erence Algebra).

LDA created by D.Robertz (RWTH, Aachen) is freely available
(http://wwwb.math.rwth-aachen.de/Janet/). It implements
the involutive algorithm (Gerdt,Blinkov'98) based on Janet division
and specialized to di�erence ideals generated by linear di�erence
polynomials.

Note that to apply LDA we �hide� the nonlinearity (caused by the
presence of u2 in the input di�erence equations) into the extra grid
function Pn

j := α(unj )2/2.
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Numerical solving of KdV

In the conventional notations the obtained discretization (di�erence
scheme) reads

f̃ = 0 , where f̃ :=
un+1

j − unj
τ

+
(Pn+1

j+1
− Pn+1

j−1
) + (Pn

j+1
− Pn

j−1
)

4h

+
β(un+1

j+2
− 2un+1

j+1
+ 2un+1

j−1
− un+1

j−2
) + β(unj+2

− 2unj+1
+ 2unj−1

− unj−2
)

4h3
.

To construct a numerical solution to KdV we apply the method of
simple iteration and exploit the following approximation

v2k+1
= v2k+1

−v2k +v2k = (vk+1−vk)(vk+1+vk)+v2k ≈ vk+1·2vk−v2k .
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Properties of the FDA (scheme) derived I

Using the library SymPy (http://www.sympy.org/en/) written in
Python we computed the modi�ed equation for KdV with
α = 3, β = 1.

ut + 6u1u + u3 +

τ2(108u31u + 81u21u3 + 99u1u
2

2 + 162u1u2u
2 +

63u1u4u + 6u1u6 + 99u2u3u +
27

2
u2u5 + 21u3u4 +

18u3u
3 + 9u5u

2 +
3

2
u7u +

1

12
u9) +

h2(3u1u2 + u3u +
1

4
u5) + O(h4) + O(τ4) + O(τ2h2) = 0 ,

where
uk := uxx · · · x︸ ︷︷ ︸

k times

.
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Properties of the FDA (scheme) derived II

1 The modi�ed equation shows that the scheme has the 2-nd
order in τ and in h.

2 This also implies that the scheme is (strongly) consistent.

3 The scheme is implicit, and hence it is unconditionally stable.

4 Because of universally adopted condition for convergency of
di�erence schemes (rigorously proved for linear Cauchy
problem - the Lax-Richtmyer equivalence theorem):

convergence = consistency + stability

the obtained scheme is convergent.
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FDA to conservation laws I

The di�erence polynomial f̃ generates the perfect di�erence ideal
Jf̃ K in the inversive di�erence polynomial ring with di�erences σt ,
σx , σ

−1
t , σ−1x where

σt ◦ f̃ nj = f̃ n+1

j , σx ◦ f̃ nj = f̃ nj+1, σ
−1
t ◦ f̃ nj = f̃ n−1j , σ−1x ◦ f̃ nj = f̃ nj−1.

The consistency of f̃ = 0 with f = 0 implies that every element in
Jf K is approximated by an element in Jf̃ K (strong consistency).

We illustrate this fact by the 3rd and 4th KdV conservation laws

C3 = fxx + 2uf ,

C4 = fxxx + uf 4x + u4x f .
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FDA to conservation laws II

With regard to forward and backward di�erences

∆p :=
1

h
(σx − 1) , ∆m :=

1

h
(1− σ−1x ) .

we obtain

1

2
(∆p + ∆m) ◦ u −−−→

h−→0

ux +O(h2) ,

1

2
(∆p + ∆m) ◦ f −−−→

h−→0

fx +O(h2) ,

∆m ∆p ◦ f −−−→
h−→0

fxx +O(h2) ,

∆p ∆m ∆p ◦ f −
h

2
∆m ∆p ∆m ∆p ◦ f −−−→

h−→0

fxxx +O(h2) .
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Other schemes with O(τ 2, h2) approximation

Scheme I

un+1

i =un−1i − ατ

h
uni
(
uni+1 − uni−1

)
− βτ

h3
(
uni+2 − 2uni+1 + 2uni−1 − uni−2

)
.

This explicit scheme (Belashov,Vladimirov'05, Eq.1.80) is stable for

τ ≤ 2h3

3
√
3β
∼= 0.384

h3

β
.

Scheme II
The implicit scheme (Belashov,Vladimirov'05, Eq.1.96)

un+1

j − unj
τ

+
α

4h

[
unj

(
un+1

j+1
− un+1

j−1

)
+ un+1

j

(
unj+1 − unj−1

)]
+

+
β

4h3

((
un+1

j+2
− 2un+1

j+1
+ 2un+1

j−1 − un+1

j−2

)
+

+
(
unj+2 − 2un+1

j + 2unj−1 − unj−2

))
= 0 .
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Computational experiment I

Our numerical analysis of the above di�erence schemes was done
with the Python package SciPy (http:\scipy.org). As a
benchmark, we used the exact one-soliton solution

uexact(x , y) =
2k2

1

cosh(k1(x − 4k2
1
t))2

to the KdV with α = 6, β = 1 and k1 = 0.4. In so doing, we �xed
h = 0.25 and considered the solution in interval −50 ≤ x ≤ 50 with
periodic boundary conditions (cf. Belashov,Vladimirov'05, p.49).
The numerical inaccuracy was estimated by the Frobenius norm.
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Computational experiment II
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t
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100

‖u
−
u
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a
ct
‖ F

scheme I (explicit) O(h2)

scheme II (implicit) O(h2)

our implicit scheme O(h2)

Figure: Dynamics of numerical error
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Conclusions

We considered a class of nonlinear evolution PDEs containing
the classical KdV equation which has exact multi-soliton
solutions and in�nitely many conservation laws.

We generated a FDA (implicit di�erence scheme) to KdV with
O(τ2, h2) approximation. The scheme is consistent and stable.

The conservation laws of KdV are approximated with accuracy
O(τ2, h2) by di�erence consequences of the scheme.

Experimental comparison, on the exact one-soliton solution, of
the constructed scheme with some other schemes of the same
accuracy reveals its numerical superiority.
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