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Introduction

Research problem

Solving PDE(s) in practice:

PDE(s) (+ IC or/and BC)
4
Discretization (FDM, FEM, FVM)

U

Algebraic equations
I

Numerical solving

I

Approximate solution

V.

The main research problem here is to construct a compatible (mimetic)
discretization which inherits within the required accuracy such
fundamental properties of the PDE(s) as conservation laws,
symmetries, maximum principle, etc.

V.P.Gerdt (JINR), Yu.A.Blinkov (SSU), K.B.Marinov (UD) Discretization of quasilinear evolution equations



Introduction

Discretization (Gerdt,Blinkov,Mozzhilkin'2006)

Construction of finite difference approximation (FDA):

o
2]

o

For an input PDE system complete it to involution.

If possible convert PDE into integral conservation law form with a
polynomial integrand and choose a control volume (integration
contour /surface).

Add to the output of the previous step the exact integral relations
between derivatives of dependent variables that occur in the output
of Step 2.

Discretize the obtained equations (on a Cathesian solution grid) by
using methods of numerical integration.

Eliminate partial derivatives of dependent variables from the
obtained difference equations by applying the Grobner bases
technique. This yields FDA to PDE(s) (difference scheme) as the
subset of the Grobner basis that does not contain partial derivatives.
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Evolution equations

Evolution equations

Let Ox be the derivation operator and R := Q(«, 3,...){u} be the
ordinary differential polynomial ring over the field Q(a, 3,...) of
constants (parameters).

Here we consider quasilinear evolution equations (QLEE) of the
form

ur=aum+ Flum—1,...,u,u), 0#£a€Q, meNyy
where vy := 0Xu (0 < k < m), ugp := v and F € R is a differential
polynomial of order m — 1 in 0y (denotation: ord(F) = m — 1).
If there is a differential polynomial P € R such that F = O,P then

the equation admits the differential conservation law form

ur=0x(aum—1+P), PER, ord(P)=m-2
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Evolution equations

EMES

The set of QLEEs contains most of classical equations (Kudryashov'10):
@ Korteveg-de Vries (KdV) hierarchy
Up + Uy + 6uu, =0  (KdV)
Up + Ussoooe + 10U + 3002 Uy + 20Uy Uy, = 0

@ Burgers hierarchy (Burgers equation for n = 1)
ur+ a0y (0 +u)"u=0, a#0, neNx
@ Kuramoto-Sivashinsky equation
Up + Uly 4+ aUsy + b Uyxx + C Uk =0
@ Burgers-Huxley equation

Up 4 atgy +buuy +cu+d’+du® =0

and their various generalizations.
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Evolution equations

Discretization of QLEE |

If a QLEE admits the differential polynomial conservation law form
we convert it into the equivalent integral conservation law form

f(P%—aum_l)dt—i— udx =0
a
where [ is an arbitrary singly connected integration contour.

We choose the Cartesian grid with t,4 1 —t, = 7, Xj11 — Xx; = h and
choose simple rectangular integration contour as a “control volume”

n—+1 o<
n .
J Jj+1 J+2
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Evolution equations

Discretization of QLEE Il

To discretize the contour integral we apply a numerical method of
its evaluation in term of the grid function

ul = u(ts, x;)

Then we add the (exact) integral relations

Xj+1
/ Uyt dx = up(t, xj11) — uk(t,x;), k=1,...,m—2
X

and approximate the integrals numerically on the grid.

As a result, we obtain a system of difference equations containing

n n n
UJ',U]_J',...,Um_]_J-

Finally, difference elimination of partial derivatives yields FDA.
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KdV equation

KdV equation

To be specific, we consider the nonlinear evolution Korteveg-de
Vries equation (KdV) in the following form

f=0, f:=u+auu+Puxx, u=u(t,x), a,BeR.

It has infinitely many local conservation laws

d oo
{0:Ti + 0xX; = 0|f=0 = / Tidx+[Xi]Z =0 i €Nx1 }
—_—— dt J_ B
g

where T; = T;(u) are densities and X; = X;(u) are fluxes.
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KdV equation

Conserved densities and fluxes

For « = 3, =1 the low order conservation laws are given by

T,' and X,'

T, =u X1 = 30% + uy

To =ux  Xo = 06Uy + Uxx

Ts =04 uy X3= 5u)2< + 8ulyy + 413 + Usorx

Ty = 4uuy, + Uy

Xy = 18Uty + 2402 Uy + 10Uy + Ussooo

5 Ts = 20% + 6utiyy + 1012 + U

Xs = 4202 U + 19u>2<x + 60uu)2( + 28Uy Uy + 120U + U™ + U

B W NN |-

These conservation laws were computed by using Maple package
PDEBELLII (Miao,Wang,Chen,Yang'14).
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KdV equation

Conservation laws expressed via f

Conservation laws €; belong to the radical differential ideal
[f]1 € R = Q(c, B){u} generated by f. In particular,

] Qf,' OrdX(Qt,')
1 f 3
2 fx 4
3 fox + 2uf 5
4 frooc + UFE + Utf 6
5 frovex + OUFe + Busfy + 6us f + 6Uf 7

¢; were computed by using Maple package DIFFERENTIALTHOMAS
(Béchler,Gerdt,Lange-Hegermann,Robertz'12).
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Discretization

Discretization of KdV |

Integral conservation law form
et (P4 B =0 = § ~(P+ Buc) de + ude =0
r

and chose the integration contour with t,41 —t, =7, Xj41 —Xx; = h
Integral relations

Xj+2
/ U dx = uy(t, Xj12) — ux(t, xj),
Xj

Xj+1
[ k= ultrg) - alex).
X

J
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Discretization

Discretization of KdV Il

To approximate numerically the contour integral, we apply the
trapezoidal rule to integration over t and the midpoint rule to
integration over x.

For numerical approximations of the integral relations we apply the
trapezoidal rule for the integration of u, and the midpoint rule for
the integration of uy.. This leads to the difference approximation
to KdV which is outputted by the following MAPLE code (Gerdt,
Blinkov, Marinov'17)
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Discretization

Maple code

> restart:

> with (LDAa) :

> Li:=[(-(P(n,j)+P(n+l,j)-P(n,j+2) -P(n+l,j+2)) - (beta*uxx (n,j) +tbeta*uxx (n+l, j)
-beta*uxx (n, j+2) -beta*uxx (n+1,3j+2))) *tau/2+ (u(n+l, j+1) -u(n, j+1) ) *2+h,
(ux (n,j+1)+ux(n,3)) *h/2- (u(n,j+1) -u(n,3)),

L 2*uxx (n,j+1) *h- (ux(n,j+2) -ux(n,j))]1:

|> JanetBasis (L, [n,j], [uxx,ux,u,F],2):

> collect(%[1,1]/(4*tau*h**3), [tau,h]) ;

1 1 1 1
TP L3 4 P4 3) = Pk L4 ) = P4 )
7 +h—3[Tﬁu(n+1,j

1 1 1 1
+4]—Tﬁu(n+l,j+3]+Tﬁu(n,j+4]—Tﬁu(n,j+3]+7[3u(n+l,j+1]

un+1,j4+2)—unj+2)
T

—%EIN(?’I+ 1.j) +%ﬁ1{(n,j+ 1) —%ﬁu(n,]]] +
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Discretization

Computer algebra software used

To perform algebraically the difference elimination of the grid
functions, that correspond to partial derivatives of u, from the
obtained discrete system we use the Maple package LDA (Linear
Difference Algebra).

LDA created by D.Robertz (RWTH, Aachen) is freely available
(http://wwwb.math.rwth-aachen.de/Janet/). It implements
the involutive algorithm (Gerdt,Blinkov'98) based on Janet division
and specialized to difference ideals generated by linear difference
polynomials.

Note that to apply LDA we “hide” the nonlinearity (caused by the
presence of u? in the input difference equations) into the extra grid

function P/ := a(uf’)z/Q.
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Numerical experiments

Numerical solving of KdV

In the conventional notations the obtained discretization (difference
scheme) reads

e (PR PP+ (PR - L)

f=0, where f:=- . JRm A2
wher T + 4h
B(UJ":L; - 2u_/{1r11 + 2u_]{1jil - uf—Zl) + B(ujﬂ+2 - 2Uf+1 + 2UJ{171 - UJI'L2)
4h3 '

To construct a numerical solution to KdV we apply the method of
simple iteration and exploit the following approximation

2 2 2 2 2 o 2
Virl = Vi1 = Vi tVie = (Ve = i) (Vi 1+ Vi) +Vie & Vi1 2v— Ve -
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Numerical experiments

Properties of the FDA (scheme) derived |

Using the library SYMPY (http://www.sympy.org/en/) written in
PYTHON we computed the modified equation for KdV with
a=3,=1.

us +6u1u+ us +
72(108u3 u + 81ufus + 99ur U3 + 162w tpu? +

27
63u1usu + 6uug + 9uouszu + ?U2U5 + 21luzus +
3 1
18U3U3 + QU5u2 + Euw + EU9)+
1
h2(3U1U2 + uzu + ZUS) + O(h4) + 0(7'4) + O(T2h2) =0,

where
Ug = Uxx---Xx-
—

k times
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Numerical experiments

Properties of the FDA (scheme) derived |l

© The modified equation shows that the scheme has the 2-nd
order in 7 and in h.

@ This also implies that the scheme is (strongly) consistent.
© The scheme is implicit, and hence it is unconditionally stable.

@ Because of universally adopted condition for convergency of
difference schemes (rigorously proved for linear Cauchy
problem - the Lax-Richtmyer equivalence theorem):

convergence = consistency + stability

the obtained scheme is convergent.
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Numerical experiments

FDA to conservation laws |

The difference polynomial f generates the perfect difference ideal
[f] in the inversive difference polynomial ring with differences oy,

0w, 07 1, o7 where

2

£n __ fn+l £n __ fn -1 _7n _ fn—1 -1 _7n _ 7Fn
O_tOf_—j_fJ-‘ 7UXOf_—,'_fJ-'+170—t 06_6 y Ox Of}_'—l'

—~

The consistency of f = 0 with f = 0 implies that every element in
[f] is approximated by an element in [f] (strong consistency).

We illustrate this fact by the 3rd and 4th KdV conservation laws

C3 = i + 2uf
C4:f;<xx+Uf;:l‘i“u;‘;f-
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Numerical experiments

FDA to conservation laws I

With regard to forward and backward differences

1 _
Ap :E(O'X—l), Am :E(l—axl)
we obtain
1
~(Dp+ A «+O(h),
2( p+ )OUH}U +O( )

=

< 2
2(Ap—i—Am)ofm>1‘;<—i-(’)(h ),

ApDpof —— fo+O(R?),
h—0

h 2
By B Bpof =2 Dy AmByof —— foo + O().
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Numerical experiments

Other schemes with O(72, h?) approximation

Scheme |
_ aT BT
Ufﬂ =u; t- T“:n (UF+1 - U?—l) s ( Uiy — 2uiy + 207 — U:{L2)
This explicit scheme (Belashov,VIadimirov'05, Eq.1.80) is stable for
3 h3
< =~ 0.384—.
~ 3V38 B
Scheme Il
The implicit scheme (Belashov,Vladimirov'05, Eq.1.96)
u(hLl —y" a
%J + a7 [uj’ (ujp_:-ll an+1) e 1)] n
B 1 1 1 1
+ o5 (o =20t 20 — o) +

+ (an+2 - 2ujn+1 + 2”_;1_]_ - Uf’_z)) — O .
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Numerical experiments

Computational experiment |

Our numerical analysis of the above difference schemes was done
with the Python package SCIPY (http:\scipy.org). As a
benchmark, we used the exact one-soliton solution

2k?
cosh(ki(x — 4k2t))?

Uexact(Xa Y) =

to the KdV with a =6, 5 =1 and k; = 0.4. In so doing, we fixed
h = 0.25 and considered the solution in interval —50 < x < 50 with
periodic boundary conditions (cf. Belashov,Vladimirov'05, p.49).
The numerical inaccuracy was estimated by the Frobenius norm.
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http:\scipy.org

Numerical experiments

Computational experiment |l
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Conclusion

Conclusions

@ We considered a class of nonlinear evolution PDEs containing
the classical KdV equation which has exact multi-soliton
solutions and infinitely many conservation laws.

@ We generated a FDA (implicit difference scheme) to KdV with
O(72, h?) approximation. The scheme is consistent and stable.

@ The conservation laws of KdV are approximated with accuracy
O(72, h?) by difference consequences of the scheme.

@ Experimental comparison, on the exact one-soliton solution, of
the constructed scheme with some other schemes of the same
accuracy reveals its numerical superiority.
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Conclusion
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