
Current Advances
in

Open Source
Gröbner Basis Algorithms



My name is

Christian Eder

I am from the

University of Kaiserslautern



3 years ago





Christian Eder, Jean-Charles Faugère
A survey on signature-based Gröbner
basis computations

Journal of Symbolic Computation 80: 719-784
(May-June 2017 issue)

12 reviewers, +15 pages



Idea of signatures:
Try to detect zero reductions in advance



Let I = ⟨g1, g2⟩ ∈ R := Q[x, y, z] and
let < denote DRL where

g1 = xy− z2
g2 = y2 − z2.



Apply signatures in R2:

sig(g1) = e1,
sig(g2) = e2.

Order signatures by POT (e.g. e2 > x1000e1).

In general:
sig(polynomial) = lt(module representation)

Main idea: Try to keep signature minimal.



Generate first S-pair:

g3 := sp(g1, g2) = yg1 − xg2
= y

(
xy− z2

)
− x

(
y2 − z2

)
= xz2 − yz2.

sig(g3) = lt(ye1 − xe2) = −xe2.



sp(g3, g2) reduces to zero:

lt(g2) = y2 coprime to lt(g3) = xz2

(Buchberger’s Product Criterion)



sp(g3, g2) reduces to zero:

sig(sp(g3, g2)) = lt
(
y2(ye1 − xe2)− xz2e2

)
= −xy2e2.

Use syzygy g1e2 − g2e1 with lead term xye2
▷ reduce module representation

▷ Lower signature for sp(g3, g2)

(Syzygy Criterion)



What’s about sp(g3, g1)?

Buchberger’s Product Criterion? NO
Buchberger’s Chain Criterion? NO



But sp(g3, g1) reduces to zero:

sig(sp(g3, g1)) = lt
(
y(ye1 − xe2)− z2e1

)
= −xye2.

Again: Syzygy g1e2 − g2e1 with lead term xye2
▷ reduce module representation

▷ Lower signature for sp(g3, g1)

(Syzygy Criterion)



Precondition for this talk:
Next chosen S-pair from pair set
has minimal possible signature.

Note: Over fields this limitation is
not required, but makes life easier.



General rule
For each signature handle exactly one element.

Sketch of proof
Take pairs by increasing signature.
α, β module elements.

If sig(α) = sig(β) reduce in module.
(We are not reducing the polynomials!)

▷ sig(α− β) < sig(α) , sig(β).
▷ Algorithm has handled these relations already.



#1
Computing with signatures over
the integers



joint work with

Gerhard Pfister
Adrian Popescu



Problem not mentioned until now: sig-reductions

When reducing polynomials (over fields) we
are not allowed to change the signature:

Increasing signature?
Well, we want small signatures.

Decreasing signature?
We can throw away the element, criteria apply.

Over fields this ensures a computation
by increasing signature.



Over the integers stuff gets more difficult.

We want strong Gröbner Bases:
For all f ∈ I \ {0} there exists g ∈ G s.t. lt(g) | lt(f).
(G ⊂ I and L(G) = L(I) is not enough anymore.)



Have to take care of the coefficients, too:

If

▷ lm(g) | lm(f) &

▷ ∃ a,b ∈ Z s.t. lc(f) = a lc(g) + b,
a ̸= 0 and b < lc(f)

then compute f− a lm(f)
lm(g) g.

(Either smaller lm or smaller lc!)



Same process generalizes
concept of S-pairs:

We need to consider GCD-pairs.



Problem arising from this:

Over Euclidean rings we can no longer
guarantee that the computation of
signature-based Gröbner Bases is
done by increasing signatures.



We need to restrict signature-based
criteria to remove useless elements:

We can only remove elements for a
given signature S if there exists a
syzygy π s.t.

lt(π) | S



Still, signature drops can appear.

Idea
▷ Stop computation at this point.

▷ Interreduce intermediate basis
without considering signatures.

▷ Apply new signatures / module
representations and restart.



Optimization 1: Exploit GCD-pairs

Replace f ∈ G by gp(f, g) if there exists g ∈ G s.t.

gp(f, g) = (±1)f+ ctg &
sig(gp(f, g)) = (±1)sig(f) .

▷ Trying to keep coefficient growth at a low.



Optimization 2: Optimistic sig-reductions

▷ sig-reduce an element f w.r.t. G.
▷ If there exists g ∈ G s.t. ct lt(g) = lt(f) and
sig(f− ctg) < sig(f) for some c and t
then start usual reduction process
(no longer taking care of signatures)

▷ If f reduces to zero we can go on.

▷ Otherwise we have to restart the computation.



Restarting is a huge bottleneck in general.

But often the intermediate computed
elements are quite useful for further
computations.



Optimization 3: Hybrid algorithm

▷ Start with signature-based algorithm

▷ If signature drops, restart for a
(small) number of times the
signature-based algorithm.

▷ Take intermediate basis and start
non-signature-based Gröbner basis
computation.



Examples STD HBA STD/HBA

1 10.43 0.37 28.19
2 24.91 0.10 249.10
3 87.27 0.39 223.77
4 83.51 0.20 417.55
5 23,200.05 5,873.21 3.95
6 134.29 0.61 220.15
7 1,004.56 1,128.07 0.89
8 554.02 337.55 1.641



#2
Some other ideas when computing
over the integers



joint work with
Gerhard Pfister
Adrian Popescu

wonderful bug support by
Anne Frühbis-Krüger
Jakob Kröker



Syzygy check

▷ I = ⟨f1, . . . , fr⟩, J = ⟨f1, . . . , fr, 1⟩.

▷ Compute GB H for I over Q.

▷ Compute syzygies S for J over Q.

▷ If H = ⟨1⟩ extract c from S, I = I ∪ {c}.
Else try to extract cm from S, I = I ∪ {cm}.

▷ Compute GB G for I over Z.



Normal form for local/mixed orders

Mora: Termination relies on
elements of large ecart

ecart(f) = deg(f)− deg(lt(f))

Over the integers we need to apply
this principle to GCD-computations, too.



Reduce f w.r.t. intermediate basis G.

Initialize set of possible reducers R = G.

While f ̸= 0 and ∃ g ∈ R s.t. lt(g) | lt(f):
▷ Choose g ∈ R, lt(g) | lt(f) (minimal ecart).
▷ If ecart(f) < ecart(g) then
R = R ∪

{
f
}
∪
{
gp(f,h) | h ∈ R

}
.

▷ Reduce f with g.



#3
Non-commutative stuff



joint work with

Wolfram Decker
Viktor Levandovskyy
Sharwan K. Tiwari



Modular GB Computation
We extended modular techniques
for computing Gröbner bases to
the class of non-commutative
G-algebras.

This allows parallel computation.



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,

/



Generate set of primes

Gp1 Gp2 Gpk−1 Gpk

Chinese Remainder Theorem

Farey lifting

Verification tests

G

,/



Verification tests?
As in the commutative case:
Effective verification tests are
only known in the graded case.
(Still, all non-graded examples
we computed were correct.)



Example set 1

Quasi-commutative graded Q-algebra
A = Q⟨x1, . . . , xn | xjxi = 2xixj, 1 ≤ i < j ≤ n⟩,

degree reverse lexicographic order
(i.e. weight vector ω = (1, . . . , 1)).

In the corresponding Rees algebra, we compute
left Gröbner bases for homogenized versions of
the following benchmark systems.



Examples sgb m-sgb-1 m-sgb-2 m-sgb-4 m-sgb-8 m-sgb-16

cyclic(7) 11.24 m 27.66 s 16.13 s 9.66 s 7.81 s 6.64 s
cyclic(8) 55.28 h 2.51 h 1.21 h 34.65 m 27.64 m 17.13 m

katsura(9) 4.49 m 1.51 m 49.27 s 30.60 s 21.77 s 16.28 s
katsura(10) 10.65 h 26.83 m 14.54 m 8.59 m 3.53 m 3.38 m
katsura(11) 199.71 h 4.32 h 2.76 h 1.59 h 46.48 m 24.52 m
katsura(12) - 13.78 h 7.68 h 4.40 h 2.34 h 1.46 h
katsura(13) - 50.14 h 32.33 h 17.74 h 10.72 h 5.80 h

reimer(4) 14.62 s 3.14 s 2.69 s 1.99 s 1.58 s 1.48 s
reimer(5) 29.07 h 2.59 h 1.57 h 58.47 m 26.33 m 18.04 m

eco(15) 25.93 h 9.40 h 5.77 h 3.54 h 2.55 h 1.83 h



Example set 2 Reiffen curves

Consider the family of polynomials
xp + yq + xyq−1 ∈ Q[x, y] s.t. q ≥ p+ 1.

Correspondingly we consider the second Weyl algebra

D2(Q) = Q⟨x, y, ∂x, ∂y | ∂x x = x ∂x + 1, ∂x y = y ∂x,
∂y y = y ∂y + 1, ∂y x = x ∂y ⟩,

Want to compute the Bernstein-Sato polynomial.

(Time for computing the annihilator is negligible,
we give only the time for the elimination step.)



Examples sgb m-sgb-1 m-sgb-2 m-sgb-4 m-sgb-8 m-sgb-16

Reiffen(5,6) 63.86 h 12.25 m 7.21 m 4.70 m 3.45 m 2.60 m
Reiffen(6,7) - 10.43 h 6.03 h 4.65 h 4.24 h 3.54 h
Reiffen(7,8) - 336.25 h 212.24 h 170.32 h 146.45 h 118.17 h

Note: The verification tests take 17% / 27% / 30% of the single core
running time.



#4
Getting the linear algebra done



joint work with

Jean-Charles Faugère





Problem
When applying Gaussian Elimination
we cannot swap columns:

column order = monomial order

Idea
▷ Order columns in a “nice” way.

▷ Apply specialized Gaussian Elimination.

▷ Reorder columns.









Different modes of operation



Mode 1
▷ Compute A−1B.

▷ Reduce C to zero.

▷ Eliminate D.















Mode 2
▷ Compute A−1B.

▷ Reduce C to zero.

▷ Eliminate D.







Mode 3
▷ Partly reduce A.
▷ Reduce C to zero.

▷ Eliminate D.



Parallelization

on CPUs via OpenMP







n

Time (log 2) in seconds

7 8 9 10
0

2

4

6

8

10

12

14

16

Cyclic-n / DRL / FF / SC

Singular 4-0-3

FGb v1.68

GB v0.1
GB v0.2

Magma v2.21
Maple 2016



New features in GB v0.2:
Matrix generation on the fly

Better data locality,
up to 70% less memory usage

Adaptively chosen block sizes

Prime fields up to 223 bits

Better parallel (OpenMP) scaling
(esp. for very sparse matrices)



Next steps for GB:
Better hashing, k-d-trees

ARM chips (gimme ya smartphone!)

GPU usage for linear algebra (OpenCL)

On-chip GPU usage for hashing (OpenCL)

Distributed computation

Multi-modular computation

Signature-based linear algebra



Other wishes?



Please remember



computerALGEBRA �



COMPUTERALGEBRA �



Available in OSCAR soonish.



aka



Once lecture time is over.



Speaking of



See you at

PASCO'17 23-24/07/2017
ISSAC'17 25-28/07/2017
SC2'17 29/07/2017

in Kaiserslautern.



Thank you for your attention.



Questions? Remarks?


