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Cauchy Problem for 1d Discrete Systems

1 equation, 1 unknown:

adw(t+ d) + ad�1w(t+ d� 1) + � � � + a0w(t) = v(t), t P N

ad, . . . ,a0 P F (field), ad � 0

v = (v(t))tPN P FN +
(known),

solution w = (w(t))tPN P FN (unknown).

Computation of w:

w(t+ d) = �ad�1

ad
w(t+ d� 1)� � � � � a0

ad
w(t) +

1

ad
v(t).� choose w(d� 1), . . . ,w(0) P F freely,� compute w(t) recursively.



Computation of w – Alternative Method

adw(t+ d) + ad�1w(t+ d� 1) + � � � + a0w(t) = v(t), t P N.

f := ads
d + ad�1s

d�1 + � � � + a0 P F[s].
Scalar multiplication� : F[s] � FN −Ñ FN, (s �w)(t) := w(t + 1) (left shift).
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Computation of w – Alternative Method

adw(t+ d) + ad�1w(t+ d� 1) + � � � + a0w(t) = v(t), t P N.ðñ f �w = v.

f := ads
d + ad�1s

d�1 + � � � + a0 P F[s].
Scalar multiplication� : F[s] � FN −Ñ FN, (s �w)(t) := w(t + 1) (left shift).

w(0), . . . ,w(d� 1) and v P FN given.

w(t) = (st �w)(0) =
(

(qf + r) �w)(0)
=
(

q � ( f �wloomoon
=v

)
)

(0) + (r �w)(0) = (q � v)(0) + (r �w)(0)

= qnv(n) + � � � + q0v(0)looooooooooooomooooooooooooon
inhomogeneity

+ rd�1w(d� 1) + � � � + r0w(0)loooooooooooooooooomoooooooooooooooooon
initial values

Division with remainder: st = qf + r
with q =

°n
i=0 qis

i, r =
°d�1

j=0 rjs
j.



Cauchy Problem for 1d Discrete Systems

k equations, 1 unknown:

f1 �w = v1

...

fk �w = vk

,//.//- ðñ gcd(f1, . . . , fk) �w = v 1.
k equations, l unknowns: R � (w1

...
wl

)

=

(

v1
...
vk

)

with R P F[s]k�l matrix of difference operators.
Solve Cauchy problem via Smith form or Hermite form.
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k equations, 1 unknown:

f1 �w = v1

...

fk �w = vk

,//.//- ðñ gcd(f1, . . . , fk) �w = v 1.
k equations, l unknowns: R � (w1

...
wl

)

=

(

v1
...
vk

)

with R P F[s]k�l matrix of difference operators.
Solve Cauchy problem via Smith form or Hermite form.

Relevant algebraic objects:

F[s]f1 + � � � + F[s]fk = F[s] gcd(f1, . . . , fk) � F[s] ideal.

F[s]R1� + � � � + F[s]Rk� = F[s]1�kR � F[s]1�l row module.



Multidimensional Systems

1d nd

operators
°

iPN aisiP F[s] °
µPNn aµs

µP F[s1, . . . , sn] = F[s]
tools gcd, Smith form Gröbner bases

division with remainder division with remainder
(normal form)

solutions w = (w(t))tPN P FN w = (w(µ))µPNn P FNn

Nn . . . positive orthant
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solutions w = (w(t))tPN P FN w = (w(µ))µPNn P FNn



Example: Binomial Coefficients

µ = (n,k), w(µ) =
(

n
k

)

,
(

n+1
k+1

)

=
(

n
k+1

)

+
(

n
k

)ðñ f �w = 0 with f = s1s2 � s2 � 1.

naive method
f P R[s1, s2],
w P RN

2

positive orthant.

n

k

Initial values:
1d: t0, . . . , deg(f)� 1u

= Nz deg(F[s]f),
nd: Nnz deg(F[s1, . . . , sn]f).
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Example: Binomial Coefficients

µ = (n,k), w(µ) =
(

n
k

)

,
(

n+1
k+1

)

=
(

n
k+1

)

+
(

n
k

)ðñ f �w = 0 with f = s1s2 � s2 � 1.

naive method usually
f P R[s1, s2],
w P RN

2

positive orthant.

n

k

Initial values:
1d: t0, . . . , deg(f)� 1u

= Nz deg(F[s]f),
nd: Nnz deg(F[s1, . . . , sn]f).

Initial values:
(

n
0

)

=
(

n
n

)

= 1,
n P N.

Interested in
(

n
k

)

for k P t0, . . . ,nu.
n

k

w P RN, N := N(1, 0) + N(1, 1),

s1f = s
2
1s2+s1s2+s1 P R[s1, s1s2].



Finitely Generated Affine Monoids

N � Z1�n is affine monoid :ðñ� 0 P N,� N closed under +.

Affine monoid N is finitely generated :ðñDθ P Zm�n : N = N1�mθ =
°m

i=1Nθi�.



Finitely Generated Affine Monoids

N � Z1�n is affine monoid :ðñ� 0 P N,� N closed under +.

Affine monoid N is finitely generated :ðñDθ P Zm�n : N = N1�mθ =
°m

i=1Nθi�.

Examples:

N = N1�2 N = N� Z N = Z1�2



Finitely Generated Affine Monoids

N � Z1�n is affine monoid :ðñ� 0 P N,� N closed under +.

Affine monoid N is finitely generated :ðñDθ P Zm�n : N = N1�mθ =
°m

i=1Nθi�.

Examples:

N = N1�2
(

1 1�1 2

)

N = N1�5

(

1 1
1 2�1 2�1 3�1 4

)

N = N1�4

(

1 0
2 1
0 2
0 �2

)



Monoid Algebras

Field F.

Solution space FN Q w = (w(µ))µPN.

Monoid algebra

F[N] :=

#
µ̧PNpµσµ; pµ P F, only finitely many � 0

+
with

(°
µPN pµσµ)(°µPN qµσµ) =

°
µ,νPN pµqνσµ+ν.

Scalar product (sµ �w)(ν) = w(ν+ µ), µ,ν P N, w P FN.

Binomial coefficients:

N = N(1, 0) + N(1, 1) = N1�2 ( 1 0
1 1 ) � Z1�2 f.g. affine monoid.

Solution w P RN.

Operator s1f = s
2
1s2 + s1s2 + s1 P R[s1, s1s2] = R[N].



Goal

Gröbner bases for submodules of F[N]1�l in analogy to
Gröbner bases for submodules of F[σ]1�l.

In this talk: GB for ideals in F[N] ú k equations, 1 unknown.



Gröbner Bases
N = N1�n, F[N] = F[σ] = F[σ1, . . . ,σn],¤ . . . term order on N1�n, i.e.,� total order,� minN1�n = 0,� group order, i.e., µ ¤ ν =ñ µ+ η ¤ ν+ η for µ,ν,η P N1�n.

Then:� deg(p) = maxtµ; pµ � 0u where p =
°

µPN1�n pµσ
µ P F[σ],� deg(a) = tdeg(p); 0 � p P au for a � F[σ] ideal.
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.R deg(a)P deg(a)P deg(G)



Gröbner Bases
N = N1�n, F[N] = F[σ] = F[σ1, . . . ,σn],¤ . . . term order on N1�n, i.e.,� total order,� minN1�n = 0,� group order, i.e., µ ¤ ν =ñ µ+ η ¤ ν+ η for µ,ν,η P N1�n.

Then:� deg(p) = maxtµ; pµ � 0u where p =
°

µPN1�n pµσ
µ P F[σ],� deg(a) = tdeg(p); 0 � p P au for a � F[σ] ideal.

Definition: G � F[σ] Gröbner basis of a :ðñ G generates a and

deg(a) =
¤
gPG ( deg(g) + N1�n

)

.

Theorem: ¤ term order on N1�n.

F[σ] = F

(

N
1�nz deg(a)

) ` a

p = pnf + (p� pnf)

pnf . . . normal form of p, computed via Gröbner bases.



Conic Decompositions
N � Z1�n . . . arbitrary f.g. affine monoid.

Problem: If N is not pointed, e.g., N = Z = N � 1+N � (�1), then
there are no total group orders on N with 0 = minN.



Conic Decompositions
N � Z1�n . . . arbitrary f.g. affine monoid.

Problem: If N is not pointed, e.g., N = Z = N � 1+N � (�1), then
there are no total group orders on N with 0 = minN.

Definition: Finite family (NJ)JPJ is conic decomposition of N :ðñ� �J P J : NJ is pointed f.g. submonoid of Z1�n,� �J P J : ZNJ = ZN, where ZN = N�N,� �
JPJNJ = N.



Generalised Term Orders
Definition: ¤ is a generalised term order on N w.r.t. a conic
decomposition (NJ)JPJ :ðñ� total order,� 0 = minN,� �J P J �µ P N �ν,η P NJ :

µ ¤ ν =ñ µ+ η ¤ ν+ η.

µ

η

µ + η
ν

η

ν+ η

η



Generalised Term Orders
Definition: ¤ is a generalised term order on N w.r.t. a conic
decomposition (NJ)JPJ :ðñ� total order,� 0 = minN,� �J P J �µ P N �ν,η P NJ :

µ ¤ ν =ñ µ+ η ¤ ν+ η.

Then:� deg(p) = maxtµ; pµ � 0u where p =
°

µPN pµσµ P F[N],� deg(a) = tdeg(p); 0 � p P au for a � F[N] ideal.� deg(psν) = deg(p) + ν if DJ P J with deg(p),ν P NJ.



Generalised Gröbner Bases

N � Z1�n f.g. affine monoid, F[N] � F[σ,σ�1] monoid algebra,
(NJ)JPJ conic decomposition of N, ¤ generalised term order on N.

Definition: G � F[N] Gröbner basis of ideal a � F[N] :ðñ
G generates a and

deg(a) =
¤

gPG, JPJ
deg(g)PNJ

(

deg(g) +NJ

)

.

R deg(a)P deg(a)P deg(G)
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Generalised Gröbner Bases

N � Z1�n f.g. affine monoid, F[N] � F[σ,σ�1] monoid algebra,
(NJ)JPJ conic decomposition of N, ¤ generalised term order on N.

Definition: G � F[N] Gröbner basis of ideal a � F[N] :ðñ
G generates a and

deg(a) =
¤

gPG, JPJ
deg(g)PNJ

(

deg(g) +NJ

)

.

Theorem: (NJ)JPJ conic decomposition, ¤ generalised term order
on N1�n.

F[N] = F

(

Nz deg(a)
) ` a

p = pnf + (p � pnf)

pnf . . . normal form of p, computed via Gröbner bases.
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Cauchy Problem for nd Discrete Systems

R �w = v, R P F[N]k�1, v P (FN)k, µ P N, w(µ) =?

a := F[N]1�kR. Let P P F[N]1�k such that

sµ = (sµ)nf + PR P F(Nz deg(a)
) ` a.

Then:

w(µ) = (sµ �w)(0) =
(

(sµ)nf �w)(0) + (P � (R �wloomoon
=v

)
)

(0)

=
(

(sµ)nf �w)(0) + (P � v)(0)
=

¸
νPNz deg(a)

coeff w(ν)loooooooooooomoooooooooooon
initial values

+

ķ

i=1 η̧PN coeff vi(η)loooooooooomoooooooooon
inhomogeneity

=ñ Nz deg(a) . . . initial value region.



Cauchy Problem for nd Discrete Systems

R �w = v, R P F[N]k�1, v P (FN)k, µ P N, w(µ) =?

a := F[N]1�kR. Let P P F[N]1�k such that

sµ = (sµ)nf + PR P F(Nz deg(a)
) ` a.

Then:

w(µ) = (sµ �w)(0) =
(

(sµ)nf �w)(0) + (P � (R �wloomoon
=v

)
)

(0)

=
(

(sµ)nf �w)(0) + (P � v)(0)
=

¸
νPNz deg(a)

coeff w(ν)loooooooooooomoooooooooooon
initial values

+

ķ

i=1 η̧PN coeff vi(η)loooooooooomoooooooooon
inhomogeneity

=ñ Nz deg(a) . . . initial value region.

Theorem: Assumption: Solution w exists. Then:�x P FNz deg(a) D1w P FN : R �w = v and w|Nzdeg(a) = x.



Literature� F. Pauer and S. Zampieri. Gröbner bases with respect to
generalized term orders and their application to the modelling
problem. J. Symb. Comput., 21(2):155–168, 1996.� F. Pauer and A. Unterkircher. Gröbner bases for ideals in
Laurent polynomial rings and their application to systems of
difference equations. Appl. Algebra Engrg. Comm. Comput.,
9(4):271–291, 1999.

Results:� Gröbner bases for modules over F[N] for arbitrary f.g. affine
monoids N,� Algorithm for their computation (generalised Buchberger
algorithm).



Literature� F. Pauer and S. Zampieri. Gröbner bases with respect to
generalized term orders and their application to the modelling
problem. J. Symb. Comput., 21(2):155–168, 1996.� F. Pauer and A. Unterkircher. Gröbner bases for ideals in
Laurent polynomial rings and their application to systems of
difference equations. Appl. Algebra Engrg. Comm. Comput.,
9(4):271–291, 1999.

Results:� Gröbner bases for modules over F[N] for arbitrary f.g. affine
monoids N,� Algorithm for their computation (generalised Buchberger
algorithm).

Disadvantages:� Algorithm works directly in F[N]ù complete
re-implementation of Buchberger algorithm necessary.� Existence of conic decompositions and generalised term orders
for arbitrary f.g. affine monoids N not shown.



New Algorithm – Idea

N = N1�mθ, θ P Zm�n.

ψ : N1�m
−Ñ N, rµ Þ−Ñ rµθ,

surjective, i.e., parametrisation of N.

ϕ : F[s] = F[s1, . . . , sm] = F[N1�m] −Ñ F[N], srµ Þ−Ñ σrµθ,

algebra epimorphism, parametrisation of F[N].

Idea: Compute GB in F[s], transport result to F[N].

Necessary: Compatible data θ P Zm�n, J � P(1, . . . ,m), ¤ term
order on N1�m which induces a conic decomposition and a
generalised term order on N.



Construction of Generalised Term Orders

Given: θ 1 P Zm 1�n with N1�m 1
θ 1 = N.
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Construction of Generalised Term Orders

Given: θ 1 P Zm 1�n with N1�m 1
θ 1 = N.

Define� P := conv(θ 11�, . . . ,θ 1m 1�, 0) � Q1�n polytope,� F := tF � P facet with 0 R Fu,� NF := Q¥0FXN, where Q¥0F . . . convex rational cone
generated by F.

Then: NF f.g. submonoid, (NF)FPF conic decomposition of N.



Construction of Generalised Term Orders
F P F. Let fF : QN −Ñ Q be linear with fF(P) ¤ 1 and fF(F) = 1.

Define f : QN −Ñ Q, µ Þ−Ñ max
 
fF(µ); F P F

(
.



Construction of Generalised Term Orders
F P F. Let fF : QN −Ñ Q be linear with fF(P) ¤ 1 and fF(F) = 1.

Define f : QN −Ñ Q, µ Þ−Ñ max
 
fF(µ); F P F

(
.

For µ,ν P N define

µ ¤ ν :ðñ f(µ)   f(ν)
or
(

f(µ) = f(ν) and µ ¤Z1�n ν
)

,

where ¤Z1�n is a group order on Z1�n � N.

Theorem: ¤ is a generalised term order w.r.t. the conic decompo-
sition (NF)FPF.



Construction of Compatible Data
NF = Q¥0FXN is f.g. submonoid.
Let θF P Z
�n with NF = Z1�
θF.

θ :=

(

θF1
...

θFr

) P Zm�n, Fi P F,

JF := ti; θi� P NFu,
J := tJF; F P Fu � P(1, . . . ,m)rf : N1�m

−Ñ Q, rµ Þ−Ñ °m
i=1rµif(θi�)

For rµ, rν P N1�m definerµ ¤ rν :ðñ rf(rµ)   rf(rν)
or
(rf(rµ) = rf(rν) and rµθ  ZN rνθ)

or
(rf(rµ) = rf(rν) and rµθ = rνθ and rµ ¤1 rν),

where ¤Z1�n is a group order on Z1�N, ¤1 term order on N1�m.

Theorem: (θ, J,¤) are compatible data for N.



Summary
For f.g. submonoids N, we have� a way to construct generalised term orders and compatible

data,� a Gröbner basis theory,� an efficient algorithm for the computation of these Gröbner
bases, which required for� an algorithm for solving the Cauchy problem.
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Thank you!


