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Partial spreads
Definition
A partial (k − 1)-spread in PG(n − 1,q) is a collection of
(k − 1)-dimensional subspaces with trivial intersection such that
each point is covered exactly once.

Problem
Determine the maximum size Aq(n,2k ; k) of a partial
(k − 1)-spread in PG(n − 1,q).

Remark
A partial (k − 1)-spread in PG(n − 1,q) corresponds to a
constant dimension code with codewords of dimension k in Fn

q
and subspace distance 2k .



Subspace lattice of V = F4
2



Upper bounds
Drake, Freeman 1979 (Cor. from Bose, Bush 1952)
If n = kt + r with 0 < r < k , then

Aq(n,2k ; k) ≤
t−1∑
i=0

qik+r − bθc − 1 = qr · qkt − 1
qk − 1

−bθc − 1,

where 2θ =
√

1 + 4qk (qk − qr )− (2qk − 2qr + 1).

Observation

For r ≥ 1 and k ≥ 2r we have bθc =
⌊

qr−2
2

⌋
.

If r = 0 then Aq(n,2k ; k) ≤ qr · qkt−1
qk−1 . (counting points)

If n < 2k then Aq(n,2k ; k) ≤ 1.



Lower bounds / constructions

r = 0: Segre 1964

Aq(tk ,2k ; k) = qtk−1
qk−1 for all t ≥ 1, k ≥ 1 (matches upper bound – spreads)

r ≥ 1: Beutelspacher 1975

Aq(tk + r ,2k ; k) ≥ 1 +
t−1∑
i=1

qv−ik = qr · qkt−1
qk−1−qr + 1 for all t ≥ 2,

k ≥ 2 (matches upper bound for r = 1)

r = 2: El-Zanati, Jordon, Seeliger, Sissokho 2010

A2(3m + 2,6; 3) = 23m+2−18
7 for all m ≥ 2 (matches upper bound)



A 1-spread in PG(3,2)



Beutelspacher 1975: study the holes!

I point not covered by a partial spread: hole

Lemma
Let N be the set of holes of a partial (k − 1)-spread in V. For
every hyperplane H ⊂ V we have

#N ∩ H ≡ #N (mod qk−1).

I point also valid for vector space partitions [tmt . . . kmk 1m1 ]



Holes and linear codes
I take points of N as columns of a v × n matrix G, where

v = dim(V and n = #N
I G is generator matrix of a [n, v ]q code C
I the codewords c of C are:

c = HT G

for all hyperplanes H ⊂ V
I ci = 0: point Gi ∈ H; ci 6= 0: point Gi 6∈ H
I the number of non-zeroes in c is equivalent to 0 modulo

qk−1

I C is a qk−1-divisible code
I N ∩ H corresponds to a qk−2-divisible code; recursive



MacWilliams Identities

n−i∑
j=0

(
n − j

i

)
Aj = qdim(C)−i ·

i∑
j=0

(
n − j
n − i

)
A⊥j for 0 ≤ i ≤ n

I Ai : # codewords of weight i of C
I A⊥i : # codewords of weight i of the dual code C⊥

In our application we have
I A0 = A⊥0 = 1
I C is projective: A⊥1 = 0, A⊥2 = 0
I C is qk−1-divisible: Ai = 0 if i is not divisible by qk−1



Linear programming method
If the equation system has no solutions for Ai ,A⊥i ∈ R≥0, then no

such code exists.

Example

There is no 23-divisible linear code of length n = 52 in Fv
2.

1 + A8 + A16 + A24 + A32 = 8y ,
52 + 44A8 + 36A16 + 28A24 + 20A32 = 4y · 52,(52
2

)
+

(44
2

)
A8 +

(36
2

)
A16 +

(28
2

)
A24 +

(20
2

)
A32 = 2y ·

(52
2

)
,(52

3

)
+

(44
3

)
A8 +

(36
3

)
A16 +

(28
3

)
A24 +

(20
3

)
A32 = y

((52
3

)
+A⊥3

)
are the first 4 MacWilliams Identities using A40 = A48 = 0 from a
recursive application of the linear programming method, where
y = 2v−3.



Linear programming method

Example (cont.)
Substituting x = yA⊥3 and solving for A8, A16, A24, A32 yields

A8 = −4 + 1
512x + 7

64y , A16 = 6− 3
512x − 17

64y ,
A24 = −4 + 3

512x + 397
64 y , and A32 = 1− 1

512x + 125
64 y .

Since A16, x ≥ 0, we have y ≤ 384
17 < 23. On the other hand,

since 3A8 + A16 ≥ 0, we also have −6 + y
16 ≥ 0, i.e., y ≥ 96 – a

contradiction.



First 2 MacWilliams identities
Definition
For a point set C in PG(v −1,Fq) let T (C) := {0 ≤ i ≤ c | ai > 0},
where ai denotes the number of hyperplanes with #(C ∩ H) = i .

Lemma
For integers u ∈ Z, m ≥ 0 and ∆ ≥ 1 let C in PG(v − 1,Fq) be
∆-divisible of cardinality n = u + m∆ ≥ 0. Then, we have
(q − 1) ·

∑
h∈Z,h≤m hau+h∆ = (u + m∆− uq) · qv−1

∆ −m, where
we set au+h∆ = 0 if u + h∆ < 0.

Corollary
Let C in PG(v − 1,Fq) satisfy n = #C = u + m∆ and
T (C) ⊆ {u,u + ∆, . . . ,u + m∆}. Then u < n

q or u = n = 0.



First 2 MacWilliams identities
Applied recursively, we obtain:

Theorem Năstase and Sissokho 2016

Suppose v = tk + r with t ≥ 1 and 0 < r < k . If k > qr−1
q−1 then

Aq(v ,2k ; k) = 1 +
∑t−1

i=1 qik+r = qv−qk+r +qk−1
qk−1 .

Remark
If k is large, then the construction of Beutelspacher is optimal.

Remark
We have utilized the non-negativity of a certain linear polynomial
(in a given range) it the stated Lemma.



First 3 MacWilliams identities
Lemma
Let ∆ = qs−1, m ∈ Z, and P be a partial s-spread in Fv

q with c

holes. Then, τq(c,∆,m) · qv−2

∆2 −m(m − 1) ≥ 0 and
τq(c,∆,m) ≥ 0, where τq(c,∆,m) =

m(m− 1)∆2q2 − c(2m− 1)(q − 1)∆q + c(q − 1)
(

c(q − 1) + 1
)

.

If c > 0, then τq(c,∆,m) = 0 if and only if m = 1 and c = qs−1
q−1 .

Theorem K. 2016

For integers r ≥ 1, t ≥ 2, u ≥ 0, and 0 ≤ z ≤ qr−1
q−1 /2 with

k = qr−1
q−1 + 1− z + u > r we have

Aq(v ,2k ; k) ≤ lqk + 1 + z(q − 1), where l = qv−k−qr

qk−1 and
v = kt + r .



First 3 MacWilliams identities
Theorem K. 2016
For integers r ≥ 1, t ≥ 2, y ≥ max{r ,2}, z ≥ 0 with λ = qy ,
y ≤ k , k = qr−1

q−1 + 1− z > r , v = kt + r , and l = qv−k−qr

qk−1 , we
have Aq(v ,2k ; k) ≤
lqk +

⌈
λ− 1

2 −
1
2

√
1 + 4λ (λ− (z + y − 1)(q − 1)− 1)

⌉
.

Remark
Setting y = k , we obtain the bound of Drake and Freeman.

Remark
We have utilized the non-negativity of a certain quadratic
polynomial it the stated Lemma.



First 4 MacWilliams identities
Lemma K. 2016
Let C be ∆-divisible over Fq of cardinality n > 0 and t ∈ Z. Then∑

i≥1 ∆2(i − t)(i − t − 1) · (g1 · i + g0) · Ai∆ + qhx =
n(q − 1)(n − t∆)(n − (t + 1)∆)g2, where g1 = ∆qh,
g0 = −n(q − 1)g2, g2 = h − (2∆qt + ∆q − 2nq + 2n + q − 2)
and h = ∆2q2t2 + ∆2q2t − 2∆nq2t −∆nq2 + 2∆nqt + n2q2 +
∆nq − 2n2q + n2 + nq − n.

Corollary
If there exists t ∈ Z, using the above notation, with
n/∆ /∈ [t , t+1], h ≥ 0, and g2 < 0, then there is no ∆-divisible set
over Fq of cardinality n.



First 4 MacWilliams identities
Remark
We have utilized the non-negativity of a certain cubic polynomial
it the stated Lemma.

I 24 l + 1 ≤ A2(4k + 3, 8; 4) ≤ 24 l + 4, where l = 24k−1−23

24−1
;

I 26 l + 1 ≤ A2(6k + 4, 12; 6) ≤ 26 l + 8, where l = 26k−2−24

26−1
;

I 26 l + 1 ≤ A2(6k + 5, 12; 6) ≤ 26 l + 18, where l = 26k−1−25

26−1
;

I 34 l + 1 ≤ A3(4k + 3, 8; 4) ≤ 34 l + 14, where l = 34k−1−33

34−1
;

I 35 l + 1 ≤ A3(5k + 3, 10; 5) ≤ 35 l + 13, where l = 35k−2−35

33−1
;

I 35 l + 1 ≤ A3(5k + 4, 10; 5) ≤ 35 l + 44, where l = 35k−1−34

35−1
;

I 36 l + 1 ≤ A3(6k + 4, 12; 6) ≤ 36 l + 41, where l = 36k−2−34

36−1
;

I 36 l + 1 ≤ A3(6k + 5, 12; 6) ≤ 36 l + 133, where l = 36k−1−35

36−1
;

I 37 l + 1 ≤ A3(7k + 4, 14; 7) ≤ 37 l + 40, where l = 37k−3−34

37−1
;



First 4 MacWilliams identities
I 45 l + 1 ≤ A4(5k + 3, 10; 5) ≤ 45 l + 32, where l = 45k−2−43

45−1
;

I 46 l + 1 ≤ A4(6k + 3, 12; 6) ≤ 46 l + 30, where l = 46k−3−43

46−1
;

I 46 l + 1 ≤ A4(6k + 5, 12; 6) ≤ 46 l + 548, where l = 46k−1−45

46−1
;

I 47 l + 1 ≤ A4(7k + 4, 14; 7) ≤ 47 l + 128, where l = 47k−3−44

47−1
;

I 55 l + 1 ≤ A5(5k + 2, 10; 5) ≤ 55 l + 7, where l = 55k−3−52

55−1
;

I 55 l + 1 ≤ A5(5k + 4, 10; 5) ≤ 55 l + 329, where l = 55k−1−54

55−1
;

I 75 l + 1 ≤ A7(5k + 4, 10; 5) ≤ 75 l + 1246, where l = 75k−1−72

75−1
;

I 84 l + 1 ≤ A8(4k + 3, 8; 4) ≤ 84 l + 264, where l = 84k−1−83

84−1
;

I 85 l + 1 ≤ A8(5k + 2, 10; 5) ≤ 85 l + 25, where l = 85k−3−82

85−1
;

I 86 l + 1 ≤ A8(6k + 2, 12; 6) ≤ 86 l + 21, where l = 86k−4−82

86−1
;

I 93 l + 1 ≤ A9(3k + 2, 6; 3) ≤ 93 l + 41, where l = 93k−1−92

93−1
;

I 95 l + 1 ≤ A9(5k + 3, 10; 5) ≤ 95 l + 365, where l = 95k−2−93

95−1
.



What have we done?

Determined a feasible solution for the dual of the linear program
corresponding to the first r MacWilliams identities for 2 ≤ r ≤ 4
using certain polynomials fo degree r − 1.

Open problem
What about the first r = 5 MacWilliams identities?
How does a suitable quartic polynomial look like?
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Visit us

http://subspacecodes.uni-bayreuth.de/

Thank you very much for your attention!

http://subspacecodes.uni-bayreuth.de/
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